Description
RSA encryption relies on the modular exponentiation of large integers.
Using standard notations, compute the “ciphertext” c
corresponding to the following plaintext m
:
m = 29092715682136811148741896992216382887663205723233009270907036164616385404410946789697601633832261873953783070225717396137755866976801871184236363551686364362312702985660271388900637527644505521559662128091418418029535347788018938016105431888876506254626085450904980887492319714444847439547681555866496873380
using the public key:
(n, e) = (115835143529011985466946897371659768942707075251385995517214050122410566973563965811168663559614636580713282451012293945169200873869218782362296940822448735543079113463384249819134147369806470560382457164633045830912243978622870542174381898756721599280783431283777436949655777218920351233463535926738440504017, 65537)
.
This flag is FCSC{xxxx}
, where xxxx
has to be replaced by the value of c
written in decimal.
A variant of this challenge is available here: SMIC (2).
Author
Flag
Submit your solution
You can submit your writeup for this challenge. Read the FAQ to learn how to proceed.
You need to be logged in to submit a writeup.